enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  3. Fraunhofer diffraction - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction

    Graph and image of single-slit diffraction. The width of the slit is W. The Fraunhofer diffraction pattern is shown in the image together with a plot of the intensity vs. angle θ. [10] The pattern has maximum intensity at θ = 0, and a series of peaks of decreasing intensity. Most of the diffracted light falls between the first minima.

  4. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Graph and image of single-slit diffraction. A long slit of infinitesimal width which is illuminated by light diffracts the light into a series of circular waves and the wavefront which emerges from the slit is a cylindrical wave of uniform intensity, in accordance with the Huygens–Fresnel principle.

  5. Fraunhofer diffraction equation - Wikipedia

    en.wikipedia.org/wiki/Fraunhofer_diffraction...

    Geometry of two slit diffraction Two slit interference using a red laser. Assume we have two long slits illuminated by a plane wave of wavelength λ. The slits are in the z = 0 plane, parallel to the y axis, separated by a distance S and are symmetrical about the origin. The width of the slits is small compared with the wavelength.

  6. Double-slit experiment - Wikipedia

    en.wikipedia.org/wiki/Double-slit_experiment

    Same double-slit assembly (0.7 mm between slits); in top image, one slit is closed. In the single-slit image, a diffraction pattern (the faint spots on either side of the main band) forms due to the nonzero width of the slit. This diffraction pattern is also seen in the double-slit image, but with many smaller interference fringes.

  7. Lloyd's mirror - Wikipedia

    en.wikipedia.org/wiki/Lloyd's_mirror

    In Young's experiment, the individual slits display a diffraction pattern on top of which is overlaid interference fringes from the two slits (Fig. 2). In contrast, the Lloyd's mirror experiment does not use slits and displays two-source interference without the complications of an overlaid single-slit diffraction pattern.

  8. List of optics equations - Wikipedia

    en.wikipedia.org/wiki/List_of_optics_equations

    Single slit diffraction intensity I 0 = source intensity; Wave phase through apertures

  9. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Some of the earliest work on what would become known as Fresnel diffraction was carried out by Francesco Maria Grimaldi in Italy in the 17th century. In his monograph entitled "Light", [3] Richard C. MacLaurin explains Fresnel diffraction by asking what happens when light propagates, and how that process is affected when a barrier with a slit or hole in it is interposed in the beam produced by ...