Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
An example of a fraction that cannot be represented by a decimal expression (with a finite number of digits) is 1 / 3 , 3 not being a power of 10. More generally, a decimal with n digits after the separator (a point or comma) represents the fraction with denominator 10 n , whose numerator is the integer obtained by removing the separator.
Scaling these with the scale factor 1 ⁄ 11 gives the following values: 154/11 = 14 101/11 = 9.1818... 54/11 = 4.9090... 3/11 = 0.2727... 0/11 = 0 160/11 = 14.5454... Many of these values have been truncated because they contain repeating decimals, which follows from the chosen scale factor (elevenths do not terminate in decimal). When storing ...
For example, "11" represents the number eleven in the decimal or base-10 numeral system (today, the most common system globally), the number three in the binary or base-2 numeral system (used in modern computers), and the number two in the unary numeral system (used in tallying scores). The number the numeral represents is called its value.
For example, in duodecimal, 1 / 2 = 0.6, 1 / 3 = 0.4, 1 / 4 = 0.3 and 1 / 6 = 0.2 all terminate; 1 / 5 = 0. 2497 repeats with period length 4, in contrast with the equivalent decimal expansion of 0.2; 1 / 7 = 0. 186A35 has period 6 in duodecimal, just as it does in decimal.
which means "1.1030402 times 1 followed by 5 zeroes". We have a certain numeric value (1.1030402) known as a "significand", multiplied by a power of 10 (E5, meaning 10 5 or 100,000), known as an "exponent". If we have a negative exponent, that means the number is multiplied by a 1 that many places to the right of the decimal point. For example:
It is intended for storage of floating-point values in applications where higher precision is not ... (log 10 (2 11) ≈ 3.311 decimal digits, ... nearest value to 1/3
To determine the actual value, a decimal point is placed after the first digit of the significand and the result ... 1 5 10 16 15 11 ~3.3 Single: 1 8 23 32 127 24 ~7. ...