Search results
Results from the WOW.Com Content Network
Structure from motion (SfM) [1] is a photogrammetric range imaging technique for estimating three-dimensional structures from two-dimensional image sequences that may be coupled with local motion signals. It is studied in the fields of computer vision and visual perception.
In photogrammetry and computer stereo vision, bundle adjustment is simultaneous refining of the 3D coordinates describing the scene geometry, the parameters of the relative motion, and the optical characteristics of the camera(s) employed to acquire the images, given a set of images depicting a number of 3D points from different viewpoints.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
Structure from motion may refer to: Structure from motion , a photogrammetric range imaging technique Structure from motion (psychophysics) , how humans recover shape information from rotating objects
Biological motion demonstration: dots representing a person walking. In a 1953 study on SFM done by Wallach and O'Connell the kinetic depth effect was tested. They found that by turning shadow images of a three dimensional object can be used as a cue to recover the structure of the physical object quite well. [4]
For help on the process, see Wikipedia:How to draw a diagram with Inkscape. This tutorial aims to instruct a beginner on the basic principles of vector graphics using Microsoft Word (Office 97 or later). The basic principles are the same in other drawing programs such as CorelDraw or the free and open source OpenOffice.org.
When two cells in the Voronoi diagram share a boundary, it is a line segment, ray, or line, consisting of all the points in the plane that are equidistant to their two nearest sites. The vertices of the diagram, where three or more of these boundaries meet, are the points that have three or more equally distant nearest sites.
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to ().