Search results
Results from the WOW.Com Content Network
In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]
Antenna modeling, especially in Amateur Radio. Widely used as the basis for many GUI-based programs on many platforms. Widely used as the basis for many GUI-based programs on many platforms. Version 2 is open source, but Versions 3 and 4 are commercially licensed.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
It typically involves using computer programs to compute approximate solutions to Maxwell's equations to calculate antenna performance, electromagnetic compatibility, radar cross section and electromagnetic wave propagation when not in free space. A large subfield is antenna modeling computer programs, which calculate the radiation pattern and ...
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.
It has also been used as a domain decomposition method for method of moments analysis of complex antenna structures. [11] Schelkunoff's formulation is employed particularly for scattering problems. [2] [12] [13] [14] The principle has also been used in the analysis design of metamaterials such as Huygens’ metasurfaces [15] [16] and plasmonic ...
For example, at 1 MHz, the man-made noise might be 55 dB above the thermal noise floor. If a small loop antenna's loss is 50 dB (as if the antenna included a 50 dB attenuator), then the electrical inefficiency of that antenna will have little influence on the receiving system's signal-to-noise ratio. In contrast, at quieter frequencies at about ...
Gauss's law for magnetism: magnetic field lines never begin nor end but form loops or extend to infinity as shown here with the magnetic field due to a ring of current. Gauss's law for magnetism states that electric charges have no magnetic analogues, called magnetic monopoles; no north or south magnetic poles exist in isolation. [3]