Search results
Results from the WOW.Com Content Network
7 air flow (can also be in the other direction) The Wells turbine is a low-pressure air turbine that rotates continuously in one direction independent of the direction of the air flow. Its blades feature a symmetrical airfoil with its plane of symmetry in the plane of rotation and perpendicular to the air stream.
Improvement of the energy density of the storage system because all the air contained can be used (the pressure is constant in all charge conditions, full or empty, so the turbine has no problem exploiting it, while with constant-volume systems, if the pressure goes below a safety limit, then the system needs to stop).
Specifically, a conventional steam turbine power plant is powered by steam generated from the combustion of ethanol and stored oxygen at a pressure of 60 atmospheres. This pressure-firing allows exhaust carbon dioxide to be expelled overboard at any depth without an exhaust compressor. [citation needed] Each MESMA system costs around $50–60 ...
Then the fluid is decelerated across the stators and as a consequence the kinetic energy is converted into the pressure rise by the stators. Through the compressor, the flow area decreases and the blades get smaller and smaller from stage to stage and this compensates for the increase of air pressure and density, creating a constant axial velocity.
Subsea technology involves fully submerged ocean equipment, operations, or applications, especially when some distance offshore, in deep ocean waters, or on the seabed. The term subsea is frequently used in connection with oceanography, marine or ocean engineering, ocean exploration, remotely operated vehicle (ROVs) autonomous underwater vehicles (AUVs), submarine communications or power ...
A steam turbine with the case opened Humming of a small pneumatic turbine used in a German 1940s-vintage safety lamp. A turbine (/ ˈ t ɜːr b aɪ n / or / ˈ t ɜːr b ɪ n /) (from the Greek τύρβη, tyrbē, or Latin turbo, meaning vortex) [1] [2] is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work.
As the pressure difference for the additional pump is much lower than for the pump turbine the required input pressure is lower as well. The input pressure of both pumps is given by the water column above them. For the additional pump this is the water column in the sphere and for the pump turbine it is the water column in the cylinder." [6]
Turbomachines may be further classified into two additional categories: those that absorb energy to increase the fluid pressure, i.e. pumps, fans, and compressors, and those that produce energy such as turbines by expanding flow to lower pressures. Of particular interest are applications which contain pumps, fans, compressors and turbines.