enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ellipse - Wikipedia

    en.wikipedia.org/wiki/Ellipse

    A general ellipse in the plane can be uniquely described as a bivariate quadratic equation of Cartesian coordinates, or using center, semi-major and semi-minor axes ...

  3. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    The state of an orbiting body at any given time is defined by the orbiting body's position and velocity with respect to the central body, which can be represented by the three-dimensional Cartesian coordinates (position of the orbiting body represented by x, y, and z) and the similar Cartesian components of the orbiting body's velocity.

  4. Semi-major and semi-minor axes - Wikipedia

    en.wikipedia.org/wiki/Semi-major_and_semi-minor_axes

    where (h, k) is the center of the ellipse in Cartesian coordinates, in which an arbitrary point is given by (x, y). The semi-major axis is the mean value of the maximum and minimum distances r max {\displaystyle r_{\text{max}}} and r min {\displaystyle r_{\text{min}}} of the ellipse from a focus — that is, of the distances from a focus to the ...

  5. Elliptic coordinate system - Wikipedia

    en.wikipedia.org/wiki/Elliptic_coordinate_system

    The classic applications of elliptic coordinates are in solving partial differential equations, e.g., Laplace's equation or the Helmholtz equation, for which elliptic coordinates are a natural description of a system thus allowing a separation of variables in the partial differential equations. Some traditional examples are solving systems such ...

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    For any ellipse, let a be the length of its semi-major axis and b be the length of its semi-minor axis. In the coordinate system with origin at the ellipse's center and x-axis aligned with the major axis, points on the ellipse satisfy the equation + =,

  7. Ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid

    Hence, it is confocal to the given ellipse and the length of the string is l = 2r x + (a − c). Solving for r x yields r x = ⁠ 1 / 2 ⁠ (l − a + c); furthermore r 2 y = r 2 x − c 2. From the upper diagram we see that S 1 and S 2 are the foci of the ellipse section of the ellipsoid in the xz-plane and that r 2 z = r 2 x − a 2.

  8. Elliptic curve - Wikipedia

    en.wikipedia.org/wiki/Elliptic_curve

    This equation is not defined on the line at infinity, but we can multiply by to get one that is : Z Y 2 = X 3 + a Z 2 X + b Z 3 {\displaystyle ZY^{2}=X^{3}+aZ^{2}X+bZ^{3}} This resulting equation is defined on the whole projective plane, and the curve it defines projects onto the elliptic curve of interest.

  9. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equations in the Cartesian plane ⁠: ⁠ + = = define, respectively, an ellipse and a hyperbola. In each case, the x and y axes are the principal axes. This is easily seen, given that there are no cross-terms involving products xy in either expression.