Search results
Results from the WOW.Com Content Network
Thermophiles and hyperthermophiles employ different mechanisms to adapt their cells to heat, especially to the cell wall, plasma membrane, and its biomolecules (DNA, proteins, etc.): [12] The presence in their plasma membrane of long-chain and saturated fatty acids in bacteria and "ether" bonds (diether or tetraether) in archaea. In some ...
Microbial metabolism is the means by which a microbe obtains the energy and nutrients (e.g. carbon) it needs to live and reproduce.Microbes use many different types of metabolic strategies and species can often be differentiated from each other based on metabolic characteristics.
The stress response in bacteria involves a complex network of elements that counteracts the external stimulus. Bacteria can react simultaneously to a variety of stresses and the various stress response systems interact (cross-talk) with each other. A complex network of global regulatory systems leads to a coordinated and effective response.
Most chemosynthetic bacteria form symbiotic associations with other small eukaryotes [9] The electrons that are released from hydrogen sulfide will provide the energy to sustain a proton gradient across the bacterial cytoplasmic membrane. This movement of protons will eventually result in the production of adenosine triphosphate.
Phototrophic bacteria derive energy from light using photosynthesis, while chemotrophic bacteria breaking down chemical compounds through oxidation, [106] driving metabolism by transferring electrons from a given electron donor to a terminal electron acceptor in a redox reaction. Chemotrophs are further divided by the types of compounds they ...
They evolved from symbiotic bacteria and retain a remnant genome. [59] Like bacteria, plant cells have cell walls, and contain organelles such as chloroplasts in addition to the organelles in other eukaryotes. Chloroplasts produce energy from light by photosynthesis, and were also originally symbiotic bacteria. [59]
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living ...
Knallgas bacteria stand out from other hydrogen-oxidizing bacteria that, although using H 2 as energy source, are not able to fix CO 2, as Knallgas do. [ 27 ] This aerobic hydrogen oxidation (H 2 + O 2 {\displaystyle \longrightarrow } H 2 O), also known as the Knallgas reaction, releases a considerable amount of energy, having a ΔG o of –237 ...