enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalue perturbation - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_perturbation

    In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...

  3. Perturbation theory - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory

    Perturbation theory develops an expression for the desired solution in terms of a formal power series known as a perturbation series in some "small" parameter, that quantifies the deviation from the exactly solvable problem. The leading term in this power series is the solution of the exactly solvable problem, while further terms describe the ...

  4. Weyl's inequality - Wikipedia

    en.wikipedia.org/wiki/Weyl's_inequality

    Therefore, Weyl's eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular values. [1] This result gives the bound for the perturbation in the singular values of a matrix M {\displaystyle M} due to an additive perturbation Δ {\displaystyle \Delta } :

  5. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    The perturbation theory is to answer the following question: given () and | at an unperturbed reference point , how to estimate the E n (x μ) and | at x μ close to that reference point. Without loss of generality, the coordinate system can be shifted, such that the reference point x 0 μ = 0 {\displaystyle x_{0}^{\mu }=0} is set to be the origin.

  6. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    The method removes secular terms—terms growing without bound—arising in the straightforward application of perturbation theory to weakly nonlinear problems with finite oscillatory solutions. [1] [2] The method is named after Henri Poincaré, [3] and Anders Lindstedt. [4]

  7. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    An eigenvalue is said to be non-degenerate if its eigenspace is one-dimensional. The eigenvalues of the matrices representing physical observables in quantum mechanics give the measurable values of these observables while the eigenstates corresponding to these eigenvalues give the possible states in which the system may be found, upon ...

  8. Rayleigh–Ritz method - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Ritz_method

    An alternative approach, e.g., defining the normal matrix as = of size , takes advantage of the fact that for a given matrix with orthonormal columns the eigenvalue problem of the Rayleigh–Ritz method for the matrix = = can be interpreted as a singular value problem for the matrix . This interpretation allows simple simultaneous calculation ...

  9. Bloch's theorem - Wikipedia

    en.wikipedia.org/wiki/Bloch's_theorem

    If we apply the time-independent Schrödinger equation to the Bloch wave function we obtain ^ = [(+) + ()] = with boundary conditions = (+) Given this is defined in a finite volume we expect an infinite family of eigenvalues; here is a parameter of the Hamiltonian and therefore we arrive at a "continuous family" of eigenvalues () dependent on ...