enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  3. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    It is most commonly applied in artificial life, general game playing [2] and evolutionary robotics. The main benefit is that neuroevolution can be applied more widely than supervised learning algorithms, which require a syllabus of correct input-output pairs. In contrast, neuroevolution requires only a measure of a network's performance at a task.

  4. Multi-agent system - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_system

    Simple reflex agent Learning agent. A multi-agent system (MAS or "self-organized system") is a computerized system composed of multiple interacting intelligent agents. [1] Multi-agent systems can solve problems that are difficult or impossible for an individual agent or a monolithic system to solve. [2]

  5. Robot learning - Wikipedia

    en.wikipedia.org/wiki/Robot_learning

    Learning can happen either through autonomous self-exploration or through guidance from a human teacher, like for example in robot learning by imitation. Robot learning can be closely related to adaptive control , reinforcement learning as well as developmental robotics which considers the problem of autonomous lifelong acquisition of ...

  6. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  7. Cloud robotics - Wikipedia

    en.wikipedia.org/wiki/Cloud_robotics

    Experiments show that LFRL greatly improves the efficiency of reinforcement learning for robot navigation. The cloud robotic system deployment also shows that LFRL is capable of fusing prior knowledge. Approach: Federated Learning. [11] Leveraging lifelong learning to build a cloud brain for robots was proposed in 2020.

  8. Imitation learning - Wikipedia

    en.wikipedia.org/wiki/Imitation_learning

    Imitation learning is a paradigm in reinforcement learning, where an agent learns to perform a task by supervised learning from expert demonstrations. It is also called learning from demonstration and apprenticeship learning .

  9. Multi-agent reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Multi-agent_reinforcement...

    Multi-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. [ 1 ] Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the ...