Search results
Results from the WOW.Com Content Network
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...
Kansa method has recently been extended to various ordinary and PDEs including the bi-phasic and triphasic mixture models of tissue engineering problems, [14] [15] 1D nonlinear Burger's equation [16] with shock wave, shallow water equations [17] for tide and current simulation, heat transfer problems, [18] free boundary problems, [19] and ...
In mathematics, a Dirichlet problem asks for a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. [1] The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the ...
Using the SAT technique, the boundary conditions of the PDE are imposed weakly, where the boundary values are "pulled" towards the desired conditions rather than exactly fulfilled. If the tuning parameters (inherent to the SAT technique) are chosen properly, the resulting system of ODE's will exhibit similar energy behavior as the continuous ...
FEM is a general numerical method for solving partial differential equations in two- or three-space variables (i.e., some boundary value problems). There are also studies about using FEM to solve high-dimensional problems. [1] To solve a problem, FEM subdivides a large system into smaller, simpler parts called finite elements.
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.
The solution to a boundary problem with generalized boundary conditions is solvable whenever the comparison principle holds. [ 4 ] The stability of solutions in L ∞ {\displaystyle L^{\infty }} holds as follows: a locally uniform limit of a sequence of solutions (or subsolutions, or supersolutions) is a solution (or subsolution, or supersolution).