enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    This capacity assumes that the generator polynomial is the product of + and a primitive polynomial of degree since all primitive polynomials except + have an odd number of non-zero coefficients. All burst errors of length n {\displaystyle n} will be detected by any polynomial of degree n {\displaystyle n} or greater which has a non-zero x 0 ...

  3. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    In this example, we shall encode 14 bits of message with a 3-bit CRC, with a polynomial x 3 + x + 1. The polynomial is written in binary as the coefficients; a 3rd-degree polynomial has 4 coefficients (1x 3 + 0x 2 + 1x + 1). In this case, the coefficients are 1, 0, 1 and 1.

  4. Computation of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Computation_of_cyclic...

    To maximise computation speed, an intermediate remainder can be calculated by first computing the CRC of the message modulo a sparse polynomial which is a multiple of the CRC polynomial. For CRC-32, the polynomial x 123 + x 111 + x 92 + x 84 + x 64 + x 46 + x 23 + 1 has the property that its terms (feedback taps) are at least 8 positions apart ...

  5. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.

  6. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    The largest zero of this polynomial which corresponds to the second largest zero of the original polynomial is found at 3 and is circled in red. The degree 5 polynomial is now divided by () to obtain = + + which is shown in yellow. The zero for this polynomial is found at 2 again using Newton's method and is circled in yellow.

  7. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    The roots, stationary points, inflection point and concavity of a cubic polynomial x 3 − 6x 2 + 9x − 4 (solid black curve) and its first (dashed red) and second (dotted orange) derivatives. The critical points of a cubic function are its stationary points, that is the points where the slope of the function is zero. [2]

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    In numerical analysis, polynomial interpolation is the interpolation of a given bivariate data set by the polynomial of lowest possible degree that passes through the points of the dataset. [ 1 ]

  9. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    Consequently, the coefficients can also be computed as the -th order derivative of a fully determined Savitzky–Golay filter with polynomial degree and a window size of +. For this, open source implementations are also available. [3]