Search results
Results from the WOW.Com Content Network
A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...
Exergy is a combination property [6] of a system and its environment because it depends on the state of both and is a consequence of dis-equilibrium between them. Exergy is neither a thermodynamic property of matter nor a thermodynamic potential of a system. Exergy and energy always have the same units, and the joule (symbol: J) is the unit of ...
Roman numerals: for example the word "six" in the clue might be used to indicate the letters VI; The name of a chemical element may be used to signify its symbol; e.g., W for tungsten; The days of the week; e.g., TH for Thursday; Country codes; e.g., "Switzerland" can indicate the letters CH; ICAO spelling alphabet: where Mike signifies M and ...
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Units of energy" The following 30 pages are in this category, out of 30 ...
39 405.6 (HHV) 33 313.9 (LHV) 1 478.6 (HHV) 1 250.0 (LHV) Data from same reference as for liquid hydrogen. [21] High-pressure tanks weigh much more than the hydrogen they can hold. The hydrogen may be around 5.7% of the total mass, [22] giving just 6.8 MJ per kg total mass for the LHV. See note above about use in fuel cells.
The SI unit for specific energy is the joule per kilogram (J/kg). Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries.
In thermal engineering, exergy efficiency (also known as the second-law efficiency or rational efficiency) computes the effectiveness of a system relative to its performance in reversible conditions. It is defined as the ratio of the thermal efficiency of an actual system compared to an idealized or reversible version of the system for heat ...
Therefore, only relative free energy values, or changes in free energy, are physically meaningful. The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [1]