enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological group - Wikipedia

    en.wikipedia.org/wiki/Topological_group

    An action of a topological group G on a topological space X is a group action of G on X such that the corresponding function G × X → X is continuous. Likewise, a representation of a topological group G on a real or complex topological vector space V is a continuous action of G on V such that for each g ∈ G, the map v ↦ gv from V to ...

  3. Topology - Wikipedia

    en.wikipedia.org/wiki/Topology

    Algebraic topology is a branch of mathematics that uses tools from algebra to study topological spaces. [13] The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. The most important of these invariants are homotopy groups, homology, and ...

  4. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    Homotopy groups are such a way of associating groups to topological spaces. A torus A sphere. That link between topology and groups lets mathematicians apply insights from group theory to topology. For example, if two topological objects have different homotopy groups, they cannot have the same topological structure—a fact that may be ...

  5. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

  6. Étale fundamental group - Wikipedia

    en.wikipedia.org/wiki/Étale_fundamental_group

    In algebraic topology, the fundamental group (,) of a pointed topological space (,) is defined as the group of homotopy classes of loops based at .This definition works well for spaces such as real and complex manifolds, but gives undesirable results for an algebraic variety with the Zariski topology.

  7. Fundamental group - Wikipedia

    en.wikipedia.org/wiki/Fundamental_group

    In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group.

  8. Category:Topological groups - Wikipedia

    en.wikipedia.org/wiki/Category:Topological_groups

    In mathematics, a topological group G is a group that is also a topological space such that the group multiplication G × G→G and the inverse operation G→G are continuous maps. Subcategories This category has the following 2 subcategories, out of 2 total.

  9. Compact group - Wikipedia

    en.wikipedia.org/wiki/Compact_group

    In mathematics, a compact (topological) group is a topological group whose topology realizes it as a compact topological space (when an element of the group is operated on, the result is also within the group). Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in ...