enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  3. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ramified covering of the other. It therefore connects ramification with algebraic topology, in this case.

  4. Eulerian number - Wikipedia

    en.wikipedia.org/wiki/Eulerian_number

    A tabulation of the numbers in a triangular array is called the Euler triangle or Euler's triangle. It shares some common characteristics with Pascal's triangle . Values of A ( n , k ) {\textstyle A(n,k)} (sequence A008292 in the OEIS ) for 0 ≤ n ≤ 9 {\textstyle 0\leq n\leq 9} are:

  5. Lucky numbers of Euler - Wikipedia

    en.wikipedia.org/wiki/Lucky_numbers_of_Euler

    Leonhard Euler published the polynomial k 2 − k + 41 which produces prime numbers for all integer values of k from 1 to 40. Only 6 lucky numbers of Euler exist, namely 2, 3, 5, 11, 17 and 41 (sequence A014556 in the OEIS). [1] Note that these numbers are all prime numbers. The primes of the form k 2 − k + 41 are

  6. Euler's Gem - Wikipedia

    en.wikipedia.org/wiki/Euler's_Gem

    Euler's Gem: The Polyhedron Formula and the Birth of Topology is a book on the formula + = for the Euler characteristic of convex polyhedra and its connections to the history of topology. It was written by David Richeson and published in 2008 by the Princeton University Press , with a paperback edition in 2012.

  7. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    In the special case when the bundle E in question is the tangent bundle of a compact, oriented, r-dimensional manifold, the Euler class is an element of the top cohomology of the manifold, which is naturally identified with the integers by evaluating cohomology classes on the fundamental homology class. Under this identification, the Euler ...

  8. Local Euler characteristic formula - Wikipedia

    en.wikipedia.org/wiki/Local_Euler_characteristic...

    In the mathematical field of Galois cohomology, the local Euler characteristic formula is a result due to John Tate that computes the Euler characteristic of the group cohomology of the absolute Galois group G K of a non-archimedean local field K.

  9. Euler characteristic of an orbifold - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic_of_an...

    (The appearance of in the summation is the usual Euler characteristic.) [1] [2] If the action is free, the sum has only a single term, and so this expression reduces to the topological Euler characteristic of divided by | |. [2]