enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least common multiple - Wikipedia

    en.wikipedia.org/wiki/Least_common_multiple

    A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]

  3. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  4. Divisibility rule - Wikipedia

    en.wikipedia.org/wiki/Divisibility_rule

    And that is actually the same as subtracting 7×10 n (clearly a multiple of 7) from 10×10 n. Similarly, when you turn a 3 into a 2 in the following decimal position, you are turning 30×10 n into 2×10 n, which is the same as subtracting 30×10 n −28×10 n, and this is again subtracting a multiple of 7. The same reason applies for all the ...

  5. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For if the algorithm requires N steps, then b is greater than or equal to F N+1 which in turn is greater than or equal to φ N−1, where φ is the golden ratio. Since b ≥ φ N−1, then N − 1 ≤ log φ b. Since log 10 φ > 1/5, (N − 1)/5 < log 10 φ log φ b = log 10 b. Thus, N ≤ 5 log 10 b.

  6. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  7. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .

  8. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The next number not yet crossed out in the list after 5 is 7; the next step would be to cross out every 7th number in the list after 7, but they are all already crossed out at this point, as these numbers (14, 21, 28) are also multiples of smaller primes because 7 × 7 is greater than 30.

  9. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6. Each of the products listed below, and in particular, the products for 3 and −6, is the only way that the relevant number can be written as a product of 7 and another real number: