enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    A commutative domain with a multiplicative identity element is called an integral domain. Any field is an integral domain; in fact, any subring of a field is an integral domain (as long as it contains 1). Similarly, any subring of a skew field is a domain. Thus, the zero-product property holds for any subring of a skew field.

  3. Identity element - Wikipedia

    en.wikipedia.org/wiki/Identity_element

    An identity with respect to addition is called an additive identity (often denoted as 0) and an identity with respect to multiplication is called a multiplicative identity (often denoted as 1). [3] These need not be ordinary addition and multiplication—as the underlying operation could be rather arbitrary.

  4. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    If the additive identity and the multiplicative identity are the same, then the ring is trivial (proved below). In the ring M m × n (R) of m-by-n matrices over a ring R, the additive identity is the zero matrix, [1] denoted O or 0, and is the m-by-n matrix whose entries consist entirely of the identity element 0 in R.

  5. Zero element - Wikipedia

    en.wikipedia.org/wiki/Zero_element

    An absorbing element in a multiplicative semigroup or semiring generalises the property 0 ⋅ x = 0. Examples include: The empty set, which is an absorbing element under Cartesian product of sets, since { } × S = { } The zero function or zero map defined by z(x) = 0 under pointwise multiplication (f ⋅ g)(x) = f(x) ⋅ g(x)

  6. Zero ring - Wikipedia

    en.wikipedia.org/wiki/Zero_ring

    The zero ring is the unique ring in which the additive identity 0 and multiplicative identity 1 coincide. [1] [6] (Proof: If 1 = 0 in a ring R, then for all r in R, we have r = 1r = 0r = 0. The proof of the last equality is found here.) The zero ring is commutative. The element 0 in the zero ring is a unit, serving as its own multiplicative ...

  7. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Identity element The multiplicative identity is 1; anything multiplied by 1 is itself. This feature of 1 is known as the identity property: [27] [28] =. Property of 0 Any number multiplied by 0 is 0. This is known as the zero property of multiplication: [27] = Negation −1 times any number is equal to the additive inverse of that number:

  8. Zero object (algebra) - Wikipedia

    en.wikipedia.org/wiki/Zero_object_(algebra)

    The {0} object is a terminal object of any algebraic structure where it exists, like it was described for examples above. But its existence and, if it exists, the property to be an initial object (and hence, a zero object in the category-theoretical sense) depend on exact definition of the multiplicative identity 1 in a specified structure.

  9. Rng (algebra) - Wikipedia

    en.wikipedia.org/wiki/Rng_(algebra)

    The only rng of square zero with a multiplicative identity is the zero ring {0}. [5] Any additive subgroup of a rng of square zero is an ideal. Thus a rng of square zero is simple if and only if its additive group is a simple abelian group, i.e., a cyclic group of prime order. [6]