enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.

  3. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Download QR code; Print/export ... Discrete 2D Convolution Animation. ... For example, convolution of digit sequences is the kernel operation in multiplication of ...

  4. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    Similar to the one-dimensional case, an asterisk is used to represent the convolution operation. The number of dimensions in the given operation is reflected in the number of asterisks. For example, an M-dimensional convolution would be written with M asterisks. The following represents a M-dimensional convolution of discrete signals:

  5. Line integral convolution - Wikipedia

    en.wikipedia.org/wiki/Line_integral_convolution

    In scientific visualization, line integral convolution (LIC) is a method to visualize a vector field (such as fluid motion) at high spatial resolutions. [1] The LIC technique was first proposed by Brian Cabral and Leith Casey Leedom in 1993.

  6. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  7. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  8. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    These functions are shown in the plot at the right. For example, with a 9-point linear function (moving average) two thirds of the noise is removed and with a 9-point quadratic/cubic smoothing function only about half the noise is removed. Most of the noise remaining is low-frequency noise(see Frequency characteristics of convolution filters ...

  9. Overlap–add method - Wikipedia

    en.wikipedia.org/wiki/Overlap–add_method

    For example, when = and =, Eq.3 equals , whereas direct evaluation of Eq.1 would require up to complex multiplications per output sample, the worst case being when both and are complex-valued. Also note that for any given M , {\displaystyle M,} Eq.3 has a minimum with respect to N . {\displaystyle N.} Figure 2 is a graph of the values of N ...