enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.

  3. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The gamma function then is defined in the complex plane as the analytic continuation of this integral function: it is a meromorphic function which is holomorphic except at zero and the negative integers, where it has simple poles. The gamma function has no zeros, so the reciprocal gamma function ⁠ 1 / Γ(z) ⁠ is an entire function.

  4. Incomplete gamma function - Wikipedia

    en.wikipedia.org/wiki/Incomplete_gamma_function

    Repeated application of the recurrence relation for the lower incomplete gamma function leads to the power series expansion: [2] (,) = = (+) (+) = = (+ +). Given the rapid growth in absolute value of Γ(z + k) when k → ∞, and the fact that the reciprocal of Γ(z) is an entire function, the coefficients in the rightmost sum are well-defined, and locally the sum converges uniformly for all ...

  5. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...

  6. Reciprocal gamma function - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_gamma_function

    The reciprocal is sometimes used as a starting point for numerical computation of the gamma function, and a few software libraries provide it separately from the regular gamma function. Karl Weierstrass called the reciprocal gamma function the "factorielle" and used it in his development of the Weierstrass factorization theorem.

  7. Multivariate gamma function - Wikipedia

    en.wikipedia.org/wiki/Multivariate_gamma_function

    The function is derived by Anderson [2] from first principles who also cites earlier work by Wishart, Mahalanobis and others. There also exists a version of the multivariate gamma function which instead of a single complex number takes a -dimensional vector of complex numbers as its argument. It generalizes the above defined multivariate gamma ...

  8. q-gamma function - Wikipedia

    en.wikipedia.org/wiki/Q-gamma_function

    In q-analog theory, the -gamma function, or basic gamma function, is a generalization of the ordinary gamma function closely related to the double gamma function. It was introduced by Jackson (1905) .

  9. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    An example for such a particle [9] is the spin ⁠ 1 / 2 ⁠ companion to spin ⁠ 3 / 2 ⁠ in the D (½,1) ⊕ D (1,½) representation space of the Lorentz group. This particle has been shown to be characterized by g = ⁠− + 2 / 3 ⁠ and consequently to behave as a truly quadratic fermion.