Search results
Results from the WOW.Com Content Network
A mixture of ammonia gas and water vapor is introduced into a reactor that contains a saturated solution of ammonium sulfate and about 2% to 4% of free sulfuric acid at 60 °C. Concentrated sulfuric acid is added to keep the solution acidic, and to retain its level of free acid.
Alkalinity can be measured by titrating a sample with a strong acid until all the buffering capacity of the aforementioned ions above the pH of bicarbonate or carbonate is consumed. This point is functionally set to pH 4.5. At this point, all the bases of interest have been protonated to the zero level species, hence they no longer cause ...
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Ammonia solution, also known as ammonia water, ammonium hydroxide, ammoniacal liquor, ammonia liquor, aqua ammonia, aqueous ammonia, or (inaccurately) ammonia, is a solution of ammonia in water. It can be denoted by the symbols NH 3 (aq). Although the name ammonium hydroxide suggests a salt with the composition [NH + 4][OH −
The ammonium ion is mildly acidic, reacting with Brønsted bases to return to the uncharged ammonia molecule: [NH 4] + + B − → HB + NH 3. Thus, the treatment of concentrated solutions of ammonium salts with a strong base gives ammonia. When ammonia is dissolved in water, a tiny amount of it converts to ammonium ions: H 2 O + NH 3 ⇌ OH − ...
When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution. The solution is said to be neutral as it is neither acidic nor alkaline. The pH of such a solution is close to a value of 7; the exact pH value is dependent on the temperature of the solution. Neutralization is an exothermic reaction.
The water molecule is amphoteric in aqueous solution. It can either gain a proton to form a hydronium ion H 3 O +, or else lose a proton to form a hydroxide ion OH −. [7] Another possibility is the molecular autoionization reaction between two water molecules, in which one water molecule acts as an acid and another as a base.