Search results
Results from the WOW.Com Content Network
Zero-sum thinking perceives situations as zero-sum games, where one person's gain would be another's loss. [1] [2] [3] The term is derived from game theory. However, unlike the game theory concept, zero-sum thinking refers to a psychological construct—a person's subjective interpretation of a situation. Zero-sum thinking is captured by the ...
A zero-sum game is also called a strictly competitive game, while non-zero-sum games can be either competitive or non-competitive. Zero-sum games are most often solved with the minimax theorem which is closely related to linear programming duality, [5] or with Nash equilibrium. Prisoner's Dilemma is a classic non-zero-sum game. [6]
Matching Pennies is a zero-sum game because each participant's gain or loss of utility is exactly balanced by the losses or gains of the utility of the other participants. If the participants' total gains are added up and their total losses subtracted, the sum will be zero.
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
In zero-sum games, the total benefit goes to all players in a game, for every combination of strategies, and always adds to zero (more informally, a player benefits only at the equal expense of others). [20] Poker exemplifies a zero-sum game (ignoring the possibility of the house's cut), because one wins exactly the amount one's opponents lose.
In a zero-sum situation, one side wins only because the other loses. Therefore, if you have zero-sum bias, you see most (all?) situations as a competition. And in case that definition isn’t ...
Zero-sum bias, where individuals perceive that they can only gain at the expense of others, may contribute to crab mentality. [20] This bias is rooted in a fundamental misunderstanding of success and resource distribution, leading to the incorrect belief that success and resources are limited and one person's gain is necessarily another's loss ...
The game-board is a graph G. It is a zero-sum game for two players, CON and NON. CON wants to show that I(G), the independence complex of G, has a high connectivity; NON wants to prove the opposite. At his turn, CON chooses an edge e from the remaining graph. NON then chooses one of two options: