enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  3. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).

  4. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]

  5. Boltzmann–Matano analysis - Wikipedia

    en.wikipedia.org/wiki/Boltzmann–Matano_analysis

    Observing the previous equation, a trivial solution is found for the case dc/dξ = 0, that is when concentration is constant over ξ.This can be interpreted as the rate of advancement of a concentration front being proportional to the square root of time (), or, equivalently, to the time necessary for a concentration front to arrive at a certain position being proportional to the square of the ...

  6. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    The unsteady convection–diffusion problem is considered, at first the known temperature T is expanded into a Taylor series with respect to time taking into account its three components. Next, using the convection diffusion equation an equation is obtained from the differentiation of this equation.

  7. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    Diffusion models may also be used to solve inverse boundary value problems in which some information about the depositional environment is known from paleoenvironmental reconstruction and the diffusion equation is used to figure out the sediment influx and time series of landform changes. [25]

  8. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  9. Reaction–diffusion system - Wikipedia

    en.wikipedia.org/wiki/Reaction–diffusion_system

    Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...