Search results
Results from the WOW.Com Content Network
Sodium carbonate decahydrate (Na 2 CO 3 ·10H 2 O), also known as washing soda, is the most common hydrate of sodium carbonate containing 10 molecules of water of crystallization. Soda ash is dissolved in water and crystallized to get washing soda. Na 2 CO 3 + 10 H 2 O → Na 2 CO 3 ·10H 2 O. It is one of the few metal carbonates that is ...
The alkaline fuel cell (AFC), also known as the Bacon fuel cell after its British inventor, Francis Thomas Bacon, is one of the most developed fuel cell technologies. Alkaline fuel cells consume hydrogen and pure oxygen, to produce potable water, heat, and electricity. They are among the most efficient fuel cells, having the potential to reach 70%.
Trona (trisodium hydrogendicarbonate dihydrate, also sodium sesquicarbonate dihydrate, Na 2 CO 3 ·NaHCO 3 ·2H 2 O) is a non-marine evaporite mineral. [4] [6] It is mined as the primary source of sodium carbonate in the United States, where it has replaced the Solvay process used in most of the rest of the world for sodium carbonate production.
The alkaline fuel cell (AFC) or hydrogen-oxygen fuel cell was designed and first demonstrated publicly by Francis Thomas Bacon in 1959. It was used as a primary source of electrical energy in the Apollo space program. [41] The cell consists of two porous carbon electrodes impregnated with a suitable catalyst such as Pt, Ag, CoO, etc.
Scheme of a solid-oxide fuel cell. A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte.
It is a CO 2 emission-free, external energy input-free, and safe sequence with no molecular hydrogen at any point during hydrogen releasing. The "direct LOHC fuel cell" based on the LOHC-DIPAFC coupling concept is a very attractive solution for the on-board generation of electric energy in mobile applications, [1] and it's driving researchers ...
The theoretical maximum power output from a hydrogen engine depends on the air/fuel ratio and fuel injection method used. The stoichiometric air/fuel ratio for hydrogen is 34:1. At this air/fuel ratio, hydrogen will displace 29% of the combustion chamber leaving only 71% for the air.
2-Propenoic acid, polymer with 2 p-propenamide, sodium salt / copolymer of acrylamide and sodium acrylate: Friction reducer 71050-62-9: 2-Propenoic acid, polymer with sodium phosphinate (1:1) No record 66019-18-9: 2-propenoic acid, telomer with sodium hydrogen sulfite: No record 107-19-7: 2-Propyn-1-ol / propargyl alcohol: No record 51229-78-8