enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sides of an equation - Wikipedia

    en.wikipedia.org/wiki/Sides_of_an_equation

    In solving mathematical equations, particularly linear simultaneous equations, differential equations and integral equations, the terminology homogeneous is often used for equations with some linear operator L on the LHS and 0 on the RHS. In contrast, an equation with a non-zero RHS is called inhomogeneous or non-homogeneous, as exemplified by ...

  3. Homogeneous polynomial - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_polynomial

    In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. [1] For example, x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5.

  4. Quintic threefold - Wikipedia

    en.wikipedia.org/wiki/Quintic_threefold

    One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .

  5. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.

  6. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...

  7. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    The so-called symmetrization map generalizes the latter formula, replacing by a homogeneous polynomial of degree defined by () = (, …,), where is a symmetric -linear map. [ 7 ] The formulas above even apply in the case where the field of scalars has characteristic two, though the left-hand sides are all zero in this case.

  8. Asymptotic homogenization - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_homogenization

    [5] [6] In practice, many applications require a more general way of modeling that is neither periodic nor statistically homogeneous. For this end the methods of the homogenization theory have been extended to partial differential equations, which coefficients are neither periodic nor statistically homogeneous (so-called arbitrarily rough ...

  9. Resultant - Wikipedia

    en.wikipedia.org/wiki/Resultant

    Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1.