Search results
Results from the WOW.Com Content Network
Dual inheritance theory (DIT), also known as gene–culture coevolution or biocultural evolution, [1] was developed in the 1960s through early 1980s to explain how human behavior is a product of two different and interacting evolutionary processes: genetic evolution and cultural evolution.
Several major ideas about evolution came together in the population genetics of the early 20th century to form the modern synthesis, including genetic variation, natural selection, and particulate inheritance. [1] This ended the eclipse of Darwinism and supplanted a variety of non-Darwinian theories of evolution.
Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens.
Molecular evolution describes how inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of cells and organisms. Molecular evolution is the basis of phylogenetic approaches to describing the tree of life. Molecular evolution overlaps with population genetics, especially on shorter ...
The development and spread of antibiotic resistant bacteria provides evidence that evolution due to natural selection is an ongoing process in the natural world. Natural selection is ubiquitous in all research pertaining to evolution, taking note of the fact that all of the following examples in each section of the article document the process.
Evolution is the change in the heritable characteristics of biological populations over successive generations. [1] [2] It occurs when evolutionary processes such as natural selection and genetic drift act on genetic variation, resulting in certain characteristics becoming more or less common within a population over successive generations. [3]
Genetic variation can be identified at many levels. Identifying genetic variation is possible from observations of phenotypic variation in either quantitative traits (traits that vary continuously and are coded for by many genes, e.g., leg length in dogs) or discrete traits (traits that fall into discrete categories and are coded for by one or a few genes, e.g., white, pink, or red petal color ...
Lamarck argued, as part of his theory of heredity, that a blacksmith's sons inherit the strong muscles he acquires from his work. [1]Lamarckism, also known as Lamarckian inheritance or neo-Lamarckism, [2] is the notion that an organism can pass on to its offspring physical characteristics that the parent organism acquired through use or disuse during its lifetime.