enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a bisector.

  3. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.

  4. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    Lester's theorem states that in any scalene triangle, the two Fermat points, the nine-point center, and the circumcenter are concyclic. If lines are drawn through the Lemoine point parallel to the sides of a triangle, then the six points of intersection of the lines and the sides of the triangle are concyclic, in what is called the Lemoine circle.

  5. Equidistant - Wikipedia

    en.wikipedia.org/wiki/Equidistant

    Perpendicular bisector of a line segment. The point where the red line crosses the black line segment is equidistant from the two end points of the black line segment. The cyclic polygon P is circumscribed by the circle C. The circumcentre O is equidistant to each point on the circle, and a fortiori to each vertex of the polygon.

  6. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    Consider a triangle ABC.Let the angle bisector of angle ∠ A intersect side BC at a point D between B and C.The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC:

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    [16] [17] (The set of points where the distances are equal is the perpendicular bisector of segment AB, a line.) That circle is sometimes said to be drawn about two points. The proof is in two parts. First, one must prove that, given two foci A and B and a ratio of distances, any point P satisfying the ratio of distances must fall on a ...

  8. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The three perpendicular bisectors meet at the circumcenter. Other sets of lines associated with a triangle are concurrent as well. For example: Any median (which is necessarily a bisector of the triangle's area) is concurrent with two other area bisectors each of which is parallel to a side. [1]

  9. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    The four sides can be split into two pairs of adjacent equal-length sides. [7] One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry.