enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    Although the moving average function gives better noise reduction it is unsuitable for smoothing data which has curvature over m points. A quadratic filter function is unsuitable for getting a derivative of a data curve with an inflection point because a quadratic polynomial does not have one. The optimal choice of polynomial order and number ...

  3. Exponential smoothing - Wikipedia

    en.wikipedia.org/wiki/Exponential_smoothing

    Exponential smoothing or exponential moving average (EMA) is a rule of thumb technique for smoothing time series data using the exponential window function. Whereas in the simple moving average the past observations are weighted equally, exponential functions are used to assign exponentially decreasing weights over time. It is an easily learned ...

  4. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  5. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    For instance, the 10% trimmed mean is the average of the 5th to 95th percentile of the data, while the 90% winsorized mean sets the bottom 5% to the 5th percentile, the top 5% to the 95th percentile, and then averages the data. Winsorizing thus does not change the total number of values in the data set, N.

  6. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    A random vector X ∈ R p (a p×1 "column vector") has a multivariate normal distribution with a nonsingular covariance matrix Σ precisely if Σ ∈ R p × p is a positive-definite matrix and the probability density function of X is

  7. Kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    Kernel average smoother example. The idea of the kernel average smoother is the following. For each data point X 0, choose a constant distance size λ (kernel radius, or window width for p = 1 dimension), and compute a weighted average for all data points that are closer than to X 0 (the closer to X 0 points get higher weights).

  8. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    We can see that the slope (tangent of angle) of the regression line is the weighted average of (¯) (¯) that is the slope (tangent of angle) of the line that connects the i-th point to the average of all points, weighted by (¯) because the further the point is the more "important" it is, since small errors in its position will affect the ...

  9. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [ 1 ] [ 2 ] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.