enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  3. Rexer's Annual Data Miner Survey - Wikipedia

    en.wikipedia.org/wiki/Rexer's_Annual_Data_Miner...

    Rexer Analytics’s Annual Data Miner Survey is the largest survey of data mining, data science, and analytics professionals in the industry. It consists of approximately 50 multiple choice and open-ended questions that cover seven general areas of data mining science and practice: (1) Field and goals, (2) Algorithms, (3) Models, (4) Tools (software packages used), (5) Technology, (6 ...

  4. Cross-industry standard process for data mining - Wikipedia

    en.wikipedia.org/wiki/Cross-industry_standard...

    A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [16] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [8] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [9]

  5. Curse of dimensionality - Wikipedia

    en.wikipedia.org/wiki/Curse_of_dimensionality

    There is an exponential increase in volume associated with adding extra dimensions to a mathematical space.For example, 10 2 = 100 evenly spaced sample points suffice to sample a unit interval (try to visualize a "1-dimensional" cube) with no more than 10 −2 = 0.01 distance between points; an equivalent sampling of a 10-dimensional unit hypercube with a lattice that has a spacing of 10 −2 ...

  6. Special Interest Group on Knowledge Discovery and Data Mining

    en.wikipedia.org/wiki/Special_Interest_Group_on...

    The focus is on innovative research in data mining, knowledge discovery, and large-scale data analytics. Papers emphasizing theoretical foundations are particularly encouraged, as are novel modeling and algorithmic approaches to specific data mining problems in scientific, business, medical, and engineering applications.

  7. Text mining - Wikipedia

    en.wikipedia.org/wiki/Text_mining

    Text mining, text data mining (TDM) or text analytics is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." [1] Written resources may include websites, books, emails, reviews, and ...

  8. Social media mining - Wikipedia

    en.wikipedia.org/wiki/Social_media_mining

    Social media mining faces grand challenges such as the big data paradox, obtaining sufficient samples, the noise removal fallacy, and evaluation dilemma. Social media mining represents the virtual world of social media in a computable way, measures it, and designs models that can help us understand its interactions.

  9. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Metabolomics is a very data heavy subject, and often involves sifting through massive amounts of irrelevant data before finding any conclusions. Data mining has allowed this relatively new field of medical research to grow considerably within the last decade, and will likely be the method of which new research is found within the subject. [28]