Search results
Results from the WOW.Com Content Network
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...
They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:
In the 1950s, researchers discovered that polycyclic aromatic compounds formed semi-conducting charge-transfer complex salts with halogens. In particular, high conductivity of 0.12 S/cm was reported in perylene–iodine complex in 1954. [3] This finding indicated that organic compounds could carry current.
Edge-on view of portion of crystal structure of hexamethyleneTTF/TCNQ charge transfer salt, highlighting the segregated stacking. [2] HexamethyleneTTF, featuring tetrathiafulvalene, is an iconic electron donor in this electron donor-acceptor material. Electron donors are components of many devices such as organic photovoltaic devices.
Fig. 1. The parabolas of outer-sphere reorganisation energy of the system two spheres in a solvent. Parabola i: the charge on the first, transfer to the second, parabola f: the charge on the second, transfer to the first. The abscissa is the transferred amount of charge Δe or the induced polarization P, the ordinate the Gibbs free energy.
Organic CMOS logic circuit. Total thickness is less than 3 μm. Scale bar: 25 mm. Organic electronics is a field of materials science concerning the design, synthesis, characterization, and application of organic molecules or polymers that show desirable electronic properties such as conductivity.
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
The Yukawa–Tsuno equation, first developed in 1959, [1] is a linear free-energy relationship in physical organic chemistry.It is a modified version of the Hammett equation that accounts for enhanced resonance effects in electrophilic reactions of para- and meta-substituted organic compounds.