Search results
Results from the WOW.Com Content Network
Example with infinitely many solutions: 3x + 3y = 3, 2x + 2y = 2, x + y = 1. Example with no solution: 3 x + 3 y + 3 z = 3, 2 x + 2 y + 2 z = 2, x + y + z = 1, x + y + z = 4. These results may be easier to understand by putting the augmented matrix of the coefficients of the system in row echelon form by using Gaussian elimination .
In the case of a linear system, the system may be said to be underspecified, in which case the presence of more than one solution would imply an infinite number of solutions (since the system would be describable in terms of at least one free variable [2]), but that property does not extend to nonlinear systems (e.g., the system with the ...
Each free variable gives the solution space one degree of freedom, the number of which is equal to the dimension of the solution set. For example, the solution set for the above equation is a line, since a point in the solution set can be chosen by specifying the value of the parameter z. An infinite solution of higher order may describe a ...
For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.
An underdetermined linear system has either no solution or infinitely many solutions. For example, + + = + + = is an underdetermined system without any solution; any system of equations having no solution is said to be inconsistent. On the other hand, the system
A system with infinitely many solutions is said to be positive-dimensional. A zero-dimensional system with as many equations as variables is sometimes said to be well-behaved. [3] Bézout's theorem asserts that a well-behaved system whose equations have degrees d 1, ..., d n has at most d 1 ⋅⋅⋅d n solutions. This bound is sharp.
The graph of the zero polynomial, f(x) ... for example, the unique solution of 2x − 1 = 0 is 1/2. ... but allow infinitely many non-zero terms to occur, ...
Solutions to linear Diophantine equations, such as 26x + 65y = 13, may be found using the Euclidean algorithm (c. 5th century BC). [28] Many Diophantine equations have a form similar to the equation of Fermat's Last Theorem from the point of view of algebra, in that they have no cross terms mixing two letters, without sharing its particular ...