enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  4. Magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Magnetic_resonance_imaging

    Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to generate pictures of the anatomy and the physiological processes inside the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to form images of the organs in the body.

  5. Nuclear magnetic resonance spectroscopy of proteins - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Structure determination by NMR has traditionally been a time-consuming process, requiring interactive analysis of the data by a highly trained scientist. There has been considerable interest in automating the process to increase the throughput of structure determination and to make protein NMR accessible to non-experts (See structural genomics ...

  6. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  7. Physics of magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Physics_of_magnetic...

    Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...

  8. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Example 1 H NMR spectrum (1-dimensional) of a mixture of menthol enantiomers plotted as signal intensity (vertical axis) vs. chemical shift (in ppm on the horizontal axis). Signals from spectrum have been assigned hydrogen atom groups (a through j) from the structure shown at upper left.

  9. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    While 1D NMR is more straightforward and ideal for identifying basic structural features, COSY enhances the capabilities of NMR by providing deeper insights into molecular connectivity. The two-dimensional spectrum that results from the COSY experiment shows the frequencies for a single isotope, most commonly hydrogen (1 H) along both axes.