Search results
Results from the WOW.Com Content Network
In thermodynamics, the reduced properties of a fluid are a set of state variables scaled by the fluid's state properties at its critical point.These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor, provide the basis for the simplest form of the theorem of corresponding states.
Macronutrients are defined as a class of chemical compounds which humans consume in relatively large quantities compared to vitamins and minerals which provide humans with energy. Fat has a food energy content of 38 kilojoules per gram (9 kilocalories per gram) proteins and carbohydrates 17 kJ/g (4 kcal/g).
Included for each food is its weight in grams, its calories, and (also in grams,) the amount of protein, carbohydrates, dietary fiber, fat, and saturated fat. [1] As foods vary by brands and stores, the figures should only be considered estimates, with more exact figures often included on product labels.
When discussing the chemical energy contained, there are different types which can be quantified depending on the intended purpose. One is the theoretical total amount of thermodynamic work that can be derived from a system, at a given temperature and pressure imposed by the surroundings, called exergy.
In nutrition and food science, the term calorie and the symbol cal may refer to the large unit or to the small unit in different regions of the world. It is generally used in publications and package labels to express the energy value of foods in per serving or per weight, recommended dietary caloric intake, [6] [7] metabolic rates, etc.
A nutritional Calorie is equivalent to a thousand chemical or thermodynamic calories (abbreviated "cal" with a lower case "c") or one kilocalorie (kcal). Because food energy is commonly measured in Calories, the energy density of food is commonly called "caloric density". [ 7 ]
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).