enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    In hyperbolic geometry (where Wallis's postulate is false) similar triangles are congruent. In the axiomatic treatment of Euclidean geometry given by George David Birkhoff (see Birkhoff's axioms ) the SAS similarity criterion given above was used to replace both Euclid's parallel postulate and the SAS axiom which enabled the dramatic shortening ...

  3. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    If A, B are two points on a line a, and if A′ is a point upon the same or another line a′, then, upon a given side of A′ on the straight line a′, we can always find a point B′ so that the segment AB is congruent to the segment A′B′.

  4. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    The classical equivalence between Playfair's axiom and Euclid's fifth postulate collapses in the absence of triangle congruence. [18] This is shown by constructing a geometry that redefines angles in a way that respects Hilbert's axioms of incidence, order, and congruence, except for the Side-Angle-Side (SAS) congruence.

  5. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    In elementary geometry the word congruent is often used as follows. [2] The word equal is often used in place of congruent for these objects. Two line segments are congruent if they have the same length. Two angles are congruent if they have the same measure. Two circles are congruent if they have the same diameter.

  6. Hinge theorem - Wikipedia

    en.wikipedia.org/wiki/Hinge_theorem

    In geometry, the hinge theorem (sometimes called the open mouth theorem) states that if two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first triangle is longer than the third side of the second triangle. [1]

  7. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  8. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Amongst the postulates can be found the point-line-plane postulate, the Triangle inequality postulate, postulates for distance, angle measurement, corresponding angles, area and volume, and the Reflection postulate. The reflection postulate is used as a replacement for the SAS postulate of SMSG system.

  9. Hilbert's third problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_third_problem

    Other examples are doubling the cube and trisecting the angle. Two polyhedra are called scissors-congruent if the first can be cut into finitely many polyhedral pieces that can be reassembled to yield the second. Any two scissors-congruent polyhedra have the same volume. Hilbert asks about the converse.