Search results
Results from the WOW.Com Content Network
Elastic material used in the fabrics of a summer cycling attire comprising a jersey, bib shorts and gloves. Spandex, Lycra, or elastane is a synthetic fiber known for its exceptional elasticity. It is a polyether-polyurea copolymer that was invented in 1958 by chemist Joseph Shivers at DuPont. [1] [2] [3] Yarn of colourless to white Spandex fibers
If a material contains many delocalized bonds it is likely to be soft. [10] Somewhat related to hardness is another mechanical property fracture toughness, which is a material's ability to resist breakage from forceful impact (note that this concept is distinct from the notion of toughness). A superhard material is not necessarily "supertough".
A Kelvin–Voigt material, also called a Voigt material, is the most simple model viscoelastic material showing typical rubbery properties. It is purely elastic on long timescales (slow deformation), but shows additional resistance to fast deformation.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.
The hyperelastic material is a special case of a Cauchy elastic material. For many materials, linear elastic models do not accurately describe the observed material behaviour. The most common example of this kind of material is rubber, whose stress-strain relationship can be defined as non-linearly elastic, isotropic and incompressible.
Material selection is a step in the process of designing any physical object. In the context of product design, the main goal of material selection is to minimize cost while meeting product performance goals. [1] Systematic selection of the best material for a given application begins with properties and costs of
The elastic components, as previously mentioned, can be modeled as springs of elastic constant E, given the formula: = where σ is the stress, E is the elastic modulus of the material, and ε is the strain that occurs under the given stress, similar to Hooke's law.
The elastic behavior of objects that undergo finite deformations has been described using a number of models, such as Cauchy elastic material models, Hypoelastic material models, and Hyperelastic material models. The deformation gradient (F) is the primary deformation measure used in finite strain theory.