Search results
Results from the WOW.Com Content Network
Water oxidation is a more complex chemical reaction than proton reduction. In nature, the oxygen-evolving complex performs this reaction by accumulating reducing equivalents (electrons) in a manganese-calcium cluster within photosystem II (PS II), then delivering them to water molecules, with the resulting production of molecular oxygen and ...
Manganese is also important in photosynthetic oxygen evolution in chloroplasts in plants. The oxygen-evolving complex (OEC) is a part of photosystem II contained in the thylakoid membranes of chloroplasts; it is responsible for the terminal photooxidation of water during the light reactions of photosynthesis , and has a metalloenzyme core ...
The oxidation of water is catalyzed in photosystem II by a redox-active structure that contains four manganese ions and a calcium ion; this oxygen-evolving complex binds two water molecules and contains the four oxidizing equivalents that are used to drive the water-oxidizing reaction (Kok's S-state diagrams).
In a classical laboratory demonstration, heating a mixture of potassium chlorate and manganese dioxide produces oxygen gas. Manganese dioxide also catalyses the decomposition of hydrogen peroxide to oxygen and water: 2 H 2 O 2 → 2 H 2 O + O 2. Manganese dioxide decomposes above about 530 °C to manganese(III) oxide and oxygen.
Manganese plays a significant role in host defense, blood clotting, reproduction, digestion and various other functions in the body. In particular, when concerning host defense, manganese acts as a preventative measure for oxidative stress by destroying free radicals which are ions that have an unpaired electron in their outer shells.
S 4 reacts with water producing free oxygen: 2 H 2 O → O 2 + 4 H + + 4 e −. This conversion resets the catalyst to the S 0 state. The active site of the OEC consists of a cluster of manganese and calcium with the formula Mn 4 Ca 1 O x Cl 1–2 (HCO 3) y. This cluster is bound to D 1 and CP 43 subunits and stabilized by peripheral membrane ...
In 2011 the OEC of PSII was resolved to a level of 1.9Å revealing five oxygen atoms serving as oxo bridges linking the five metal atoms and four water molecules bound to the Mn 4 CaO 5 cluster; more than 1,300 water molecules were found in each photosystem II monomer, some forming extensive hydrogen-bonding networks that may serve as channels ...
Manganese may also form mixed oxides with other metals : Bixbyite, (Fe III,Mn III) 2 O 3, a manganese(III) iron(III) oxide mineral; Jacobsite, Mn II Fe III 2 O 4, a manganese(II) iron(III) oxide mineral; Columbite, (Fe II,Mn II)Nb 2 O 6, a niobate of iron(II) and manganese(II) Tantalite, (Fe II,Mn II)Ta 2 O 6, a tantalum(V) mineral group close ...