Search results
Results from the WOW.Com Content Network
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
In the standard form it is possible to assume, without loss of generality, that the objective function f is a linear function.This is because any program with a general objective can be transformed into a program with a linear objective by adding a single variable t and a single constraint, as follows: [9]: 1.4
In simple terms, a convex function graph is shaped like a cup (or a straight line like a linear function), while a concave function's graph is shaped like a cap . A twice-differentiable function of a single variable is convex if and only if its second derivative is nonnegative on its entire domain. [1]
This follows from the fact that the convolution of two log-concave functions is log-concave. The product of two log-concave functions is log-concave. This means that joint densities formed by multiplying two probability densities (e.g. the normal-gamma distribution, which always has a shape parameter ≥ 1) will be log-concave.
Otherwise, if a feasible solution exists and if the constraint set is bounded, then the optimum value is always attained on the boundary of the constraint set, by the maximum principle for convex functions (alternatively, by the minimum principle for concave functions) since linear functions are both convex and concave. However, some problems ...
Cardinal function; Cauchy-continuous function; Closed convex function; Coarse function; Coercive function; Comparison function; Concave function; Constructible function; Continuous function; Continuous functions on a compact Hausdorff space; Convex function; Cyclical monotonicity
Fractional programming studies optimization of ratios of two nonlinear functions. The special class of concave fractional programs can be transformed to a convex optimization problem. Nonlinear programming studies the general case in which the objective function or the constraints or both contain nonlinear parts. This may or may not be a convex ...
p-adic function: a function whose domain is p-adic. Linear function; also affine function. Convex function: line segment between any two points on the graph lies above the graph. Also concave function. Arithmetic function: A function from the positive integers into the complex numbers. Analytic function: Can be defined locally by a convergent ...