Search results
Results from the WOW.Com Content Network
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
This image is a derivative work of the following images: File:KCL.png licensed with CC BY-SA 3.0-migrated, GFDL . 2006-08-01T17:41:58Z Omegatron 196x195 (5359 Bytes) Also, user-created images may not be watermarked, distorted, have any credits in the image itself or anything else that would hamper their free use
Kirchhoff's laws are named after Gustav Kirchhoff and cover thermodynamics, thermochemistry, electrical circuits and spectroscopy (see Kirchhoff's laws (disambiguation)). Kleiber's law: for the vast majority of animals, an animal's metabolic rate scales to the 3⁄4 power of the animal's mass. Named after Max Kleiber.
Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.
Download as PDF; Printable version; In other projects Wikimedia Commons; Wikidata item; Appearance. ... Rule of thumb; 0–9. 1 in 60 rule; 1% rule; 1:5:200; 18 ...
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
A mechanical network diagram of a simple resonator (top) and one possible electrical analogy for it (bottom) In an electrical network diagram, limited to linear systems, there are three passive elements: resistance, inductance, and capacitance; and two active elements: the voltage generator, and the current generator.
Mesh analysis and loop analysis both make systematic use of Kirchhoff’s voltage law to arrive at a set of equations guaranteed to be solvable if the circuit has a solution. [1] Mesh analysis is usually easier to use when the circuit is planar, compared to loop analysis. [2]