enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size n {\displaystyle n} , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size ( n − 1 ) {\displaystyle (n-1)} obtained by omitting one observation.

  4. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This pre-aggregated data set becomes the new sample data over which to draw samples with replacement. This method is similar to the Block Bootstrap, but the motivations and definitions of the blocks are very different. Under certain assumptions, the sample distribution should approximate the full bootstrapped scenario.

  5. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  6. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Formulas, tables, and power function charts are well known approaches to determine sample size. Steps for using sample size tables: Postulate the effect size of interest, α, and β. Check sample size table [20] Select the table corresponding to the selected α; Locate the row corresponding to the desired power; Locate the column corresponding ...

  7. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    One set, the bootstrap sample, is the data chosen to be "in-the-bag" by sampling with replacement. The out-of-bag set is all data not chosen in the sampling process. When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each ...

  8. Bernoulli sampling - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_sampling

    An essential property of Bernoulli sampling is that all elements of the population have equal probability of being included in the sample. [1] Bernoulli sampling is therefore a special case of Poisson sampling. In Poisson sampling each element of the population may have a different probability of being included in the sample. In Bernoulli ...

  9. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Overabundance of already collected data became an issue only in the "Big Data" era, and the reasons to use undersampling are mainly practical and related to resource costs. Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically ...