Search results
Results from the WOW.Com Content Network
An earth-leakage protection device is a safety device used in electrical installations to prevent shock. It consists of either a current sensing mechanism, or a voltage sensing mechanism. Such devices may be found in the form of either a circuit breaker , known as an earth-leakage circuit breaker ( ELCB ), or built into a socket (aka receptacle ) .
A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) [a] is an electrical safety device, more specifically a form of Earth-leakage protection device, that interrupts an electrical circuit when the current passing through a conductor is not equal and opposite in both directions, therefore indicating leakage current to ground or ...
An insulation monitoring device monitors the ungrounded system between an active phase conductor and earth. It is intended to give an alert (light and sound) or disconnect the power supply when the resistance between the two conductors drops below a set value, usually 50 kΩ (sample of IEC standard for medical applications). The main advantage ...
Today, microprocessor-based relays can perform many protective functions in one device. [1] When one device performs several protective functions, it is typically denoted "11" by the standard as a "Multifunction Device", but ANSI Device Numbers are still used in documentation like single-line diagrams or schematics to indicate which specific ...
Earth fault protection also requires current transformers and senses an imbalance in a three-phase circuit. Normally the three phase currents are in balance, i.e. roughly equal in magnitude. If one or two phases become connected to earth via a low impedance path, their magnitudes will increase dramatically, as will current imbalance.
The diagram shows leakage current from an appliance such as an electric motor A flowing through the building's ground system G to the neutral wire at the utility ground bonding point at the service panel. The ground loop between components C1 and C2 creates a second parallel path for the current. [8]
Electromechanical protective relays operate by either magnetic attraction, or magnetic induction. [9]: 14 Unlike switching type electromechanical relays with fixed and usually ill-defined operating voltage thresholds and operating times, protective relays have well-established, selectable, and adjustable time and current (or other operating parameter) operating characteristics.
Digital/numerical relays provide a front panel display, or display on a terminal through a communication interface. This is used to display relay settings and real-time current/voltage values, etc. More complex digital relays will have metering and communication protocol ports, allowing the relay to become an element in a SCADA system.