Search results
Results from the WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
The basic rule for divisibility by 4 is that if the number formed by the last two digits in a number is divisible by 4, the original number is divisible by 4; [2] [3] this is because 100 is divisible by 4 and so adding hundreds, thousands, etc. is simply adding another number that is divisible by 4. If any number ends in a two digit number that ...
96 as the difference of two squares (in orange). 96 is: an octagonal number. [1] a refactorable number. [2] an untouchable number. [3] a semiperfect number since it is a multiple of 6. an abundant number since the sum of its proper divisors is greater than 96. the fourth Granville number and the second non-perfect Granville number.
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
Demonstration, with Cuisenaire rods, of the first four highly composite numbers: 1, 2, 4, 6. A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N.
For example, 99 is not a harshad number, since 9 + 9 = 18, and 99 is not divisible by 18. The base number (and furthermore, its powers) will always be a harshad number in its own base, since it will be represented as "10" and 1 + 0 = 1. All numbers whose base b digit sum divides b−1 are harshad numbers in base b.
360 is divisible by the number of its divisors , and it is the smallest number divisible by every natural number from 1 to 10, except 7. Furthermore, one of the divisors of 360 is 72, which is the number of primes below it. 360 is the sum of twin primes (179 + 181) and the sum of four consecutive powers of three (9 + 27 + 81 + 243).