Search results
Results from the WOW.Com Content Network
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.
The twisted cubic is a projective algebraic variety. Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in ...
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x 2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).
Algebraic geometry is the place where the algebra involved in solving systems of simultaneous multivariable polynomial equations meets the geometry of curves, surfaces, and higher dimensional algebraic varieties.
Real algebra is the part of algebra which is relevant to real algebraic (and semialgebraic) geometry. It is mostly concerned with the study of ordered fields and ordered rings (in particular real closed fields ) and their applications to the study of positive polynomials and sums-of-squares of polynomials .
algebraic geometry Algebraic geometry is a branch of mathematics that studies solutions to algebraic equations. algebraic geometry over the field with one element One goal is to prove the Riemann hypothesis. [2] See also the field with one element and Peña, Javier López; Lorscheid, Oliver (2009-08-31). "Mapping F_1-land:An overview of ...
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology.
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these ...