Search results
Results from the WOW.Com Content Network
For example, 4% electrical steel has an initial relative permeability (at or near 0 T) of 2,000 and a maximum of 38,000 at T = 1 [5] [6] and different range of values at different percent of Si and manufacturing process, and, indeed, the relative permeability of any material at a sufficiently high field strength trends toward 1 (at magnetic ...
where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).
The permeability of ferromagnetic materials is not constant, but depends on H. In saturable materials the relative permeability increases with H to a maximum, then as it approaches saturation inverts and decreases toward one. [2] [3] Different materials have different saturation levels.
The typical relative permeability (μ r) of electrical steel is 4,000-38,000 times that of vacuum, compared to 1.003-1800 for stainless steel. [ 15 ] [ 16 ] [ 17 ] The magnetic properties of electrical steel are dependent on heat treatment , as increasing the average crystal size decreases the hysteresis loss.
It is a measure of material permeability variation after demagnetization, given by a formula = (), where , are permeability values, and t 1, t 2 are time from demagnetization; usually determined for t 1 = 10 min, t 2 = 100 min; range from 2×10 −6 to 12×10 −6 for typical MnZn and NiZn ferrites;
Ferromagnetic materials are noticeably attracted to a magnet, which is a consequence of their substantial magnetic permeability. Magnetic permeability describes the induced magnetization of a material due to the presence of an external magnetic field. For example, this temporary magnetization inside a steel plate accounts for the plate's ...
and permeability is defined as above in § Speed of electromagnetic waves in good dielectrics = the permeability of free space = 4π x 10 −7 H/m. = relative magnetic permeability of the material. Nonmagnetic conductive materials such as copper typically have a near 1.
The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core. The use of a magnetic core can increase the strength of magnetic field in an electromagnetic coil by a factor of several hundred ...