enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/KruskalWallis_test

    Difference between ANOVA and KruskalWallis test with ranks. The KruskalWallis test by ranks, KruskalWallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or ...

  3. Median test - Wikipedia

    en.wikipedia.org/wiki/Median_test

    The Wilcoxon–Mann–Whitney U two-sample test or its generalisation for more samples, the KruskalWallis test, can often be considered instead. The relevant aspect of the median test is that it only considers the position of each observation relative to the overall median, whereas the Wilcoxon–Mann–Whitney test takes the ranks of each ...

  4. Van der Waerden test - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waerden_test

    The most common non-parametric test for the one-factor model is the Kruskal-Wallis test. The Kruskal-Wallis test is based on the ranks of the data. The advantage of the Van Der Waerden test is that it provides the high efficiency of the standard ANOVA analysis when the normality assumptions are in fact satisfied, but it also provides the ...

  5. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    KruskalWallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution. Kuiper's test: tests whether a sample is drawn from a given distribution, sensitive to cyclic variations such as day of the week. Logrank test: compares survival distributions of two right-skewed, censored samples.

  6. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    Typically, however, the one-way ANOVA is used to test for differences among at least three groups, since the two-group case can be covered by a t-test. [56] When there are only two means to compare, the t-test and the ANOVA F -test are equivalent; the relation between ANOVA and t is given by F = t 2 .

  7. Jonckheere's trend test - Wikipedia

    en.wikipedia.org/wiki/Jonckheere's_Trend_Test

    It is similar to the Kruskal-Wallis test in that the null hypothesis is that several independent samples are from the same population. However, with the KruskalWallis test there is no a priori ordering of the populations from which the samples are drawn.

  8. Two-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Two-way_analysis_of_variance

    In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.

  9. Talk:Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Talk:KruskalWallis_test

    The null hypothesis is that all populations have the same distribution. Kruskal-Wallis assumes that the errors in observations are i.i.d. (in the same way that parametric ANOVA assumes i.i.d. (,) errors; Kruskal-Wallis drops only the normality assumption). The test is designed to detect simple shifts in location (mean or median - same thing ...