enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric group theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_group_theory

    Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...

  3. Category:Geometric group theory - Wikipedia

    en.wikipedia.org/.../Category:Geometric_group_theory

    In mathematics, geometric group theory is the study of groups by geometric methods. See also Category:Combinatorial group theory . The main article for this category is Geometric group theory .

  4. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Geometric group theory attacks these problems from a geometric viewpoint, either by viewing groups as geometric objects, or by finding suitable geometric objects a group acts on. [7] The first idea is made precise by means of the Cayley graph , whose vertices correspond to group elements and edges correspond to right multiplication in the group.

  5. Presentation of a group - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_group

    A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.

  6. Van Kampen diagram - Wikipedia

    en.wikipedia.org/wiki/Van_Kampen_diagram

    In the mathematical area of geometric group theory, a Van Kampen diagram (sometimes also called a Lyndon–Van Kampen diagram [1] [2] [3]) is a planar diagram used to represent the fact that a particular word in the generators of a group given by a group presentation represents the identity element in that group.

  7. One-relator group - Wikipedia

    en.wikipedia.org/wiki/One-relator_group

    In the mathematical subject of group theory, a one-relator group is a group given by a group presentation with a single defining relation. One-relator groups play an important role in geometric group theory by providing many explicit examples of finitely presented groups.

  8. Geometric group action - Wikipedia

    en.wikipedia.org/wiki/Geometric_group_action

    In geometric group theory, a geometry is any proper, geodesic metric space. An action of a finitely-generated group G on a geometry X is geometric if it satisfies the following conditions: Each element of G acts as an isometry of X. The action is cocompact, i.e. the quotient space X/G is a compact space.

  9. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object.