Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
Antipodal symmetry is an alternative name for a point reflection symmetry through the origin. [14] Such a "reflection" preserves orientation if and only if k is an even number. [15] This implies that for m = 3 (as well as for other odd m), a point reflection changes the orientation of the space, like a mirror-image symmetry.
For a human observer, some symmetry types are more salient than others, in particular the most salient is a reflection with a vertical axis, like that present in the human face. Ernst Mach made this observation in his book "The analysis of sensations" (1897), [ 27 ] and this implies that perception of symmetry is not a general response to all ...
Its symmetry is p [] or , order p. A unitary operator generator for is seen as a rotation in by 2 π /p radians counter clockwise, and a edge is created by sequential applications of a single unitary reflection. A unitary reflection generator for a 1-polytope with p vertices is e 2 π i/p = cos(2 π /p) + i sin(2 π /p).
Piece of loose-fill cushioning with C 2h symmetry. C nh, [n +,2], (n*) of order 2n - prismatic symmetry or ortho-n-gonal group (abstract group Z n × Dih 1); for n=1 this is denoted by C s (1*) and called reflection symmetry, also bilateral symmetry. It has reflection symmetry with respect to a plane perpendicular to the n-fold rotation axis.
D 1 is the 2-element group containing the identity operation and a single reflection, which occurs when the figure has only a single axis of bilateral symmetry, for example the letter "A". D 2 , which is isomorphic to the Klein four-group , is the symmetry group of a non-equilateral rectangle.
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.