enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    A log-normal process is the statistical realization of the multiplicative product of many independent random variables, each of which is positive. This is justified by considering the central limit theorem in the log domain (sometimes called Gibrat's law ).

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    In machine learning, normalization is a statistical technique with various applications. There are two main forms of normalization, namely data normalization and activation normalization . Data normalization (or feature scaling ) includes methods that rescale input data so that the features have the same range, mean, variance, or other ...

  4. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    In addition, machine learning has been applied to systems biology problems such as identifying transcription factor binding sites using Markov chain optimization. [2] Genetic algorithms, machine learning techniques which are based on the natural process of evolution, have been used to model genetic networks and regulatory structures. [2]

  5. Evidence lower bound - Wikipedia

    en.wikipedia.org/wiki/Evidence_lower_bound

    The ELBO is useful because it provides a guarantee on the worst-case for the log-likelihood of some distribution (e.g. ()) which models a set of data. The actual log-likelihood may be higher (indicating an even better fit to the distribution) because the ELBO includes a Kullback-Leibler divergence (KL divergence) term which decreases the ELBO ...

  6. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Supervised learning involves learning from a training set of data. Every point in the training is an input–output pair, where the input maps to an output. The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input.

  7. Evolutionary programming - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_programming

    Evolutionary programming is an evolutionary algorithm, where a share of new population is created by mutation of previous population without crossover. [1] [2] Evolutionary programming differs from evolution strategy ES(+) in one detail. [1]

  8. Andrew Luck reflects on shocking retirement 5 years later: 'A ...

    www.aol.com/sports/andrew-luck-reflects-shocking...

    It was also not an easy process for the man himself. Five years after the bizarre scene that descended upon an Indianapolis Colts preseason game, the former No. 1 overall draft pick reflected on ...

  9. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Sometimes models are intimately associated with a particular learning rule. A common use of the phrase "ANN model" is really the definition of a class of such functions (where members of the class are obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons, number of layers or their ...