Search results
Results from the WOW.Com Content Network
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the ...
However, for polynomials specifically, the study of root-finding algorithms belongs to computer algebra, since algebraic properties of polynomials are fundamental for the most efficient algorithms. The efficiency and applicability of an algorithm may depend sensitively on the characteristics of the given functions.
Also, even with a good approximation, when one evaluates a polynomial at an approximate root, one may get a result that is far to be close to zero. For example, if a polynomial of degree 20 (the degree of Wilkinson's polynomial) has a root close to 10, the derivative of the polynomial at the root may be of the order of ; this implies that an ...
It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial (x – r) can be factored out of the polynomial using polynomial long division, resulting in a polynomial of lower degree whose roots are also roots of the original polynomial.
Even if the 'drastic set of assumptions' does not work well for some particular polynomial p(x), then p(x) can be transformed into a related polynomial r for which the assumptions are viable; e.g. by first shifting the origin towards a suitable complex number w, giving a second polynomial q(x) = p(x − w), that give distinct roots clearly distinct magnitudes, if necessary (which it will be if ...
The subtraction of only multiples of 2 from the maximal number of positive roots occurs because the polynomial may have nonreal roots, which always come in pairs since the rule applies to polynomials whose coefficients are real. Thus if the polynomial is known to have all real roots, this rule allows one to find the exact number of positive and ...
Every real polynomial of odd degree has an odd number of real roots (counting multiplicities); likewise, a real polynomial of even degree must have an even number of real roots. Consequently, real odd polynomials must have at least one real root (because the smallest odd whole number is 1), whereas even polynomials may have none.
For instance, the polynomial x 2 has a double root at x = 0. However, the polynomial x 2 − ε (a perturbation of size ε) has roots at ±√ε, which is much bigger than ε when ε is small. It is therefore natural to expect that ill-conditioning also occurs when the polynomial has zeros which are very close.