Search results
Results from the WOW.Com Content Network
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]
In words, [p, q, r] is equivalent to: "if q, then p, else r", or "p or r, according as q or not q". This may also be stated as "q implies p, and not q implies r". So, for any values of p, q, and r, the value of [p, q, r] is the value of p when q is true, and is the value of r otherwise. The conditioned disjunction is also equivalent to
The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
A truth table is a semantic proof method used to determine the truth value of a propositional logic expression in every possible scenario. [92] By exhaustively listing the truth values of its constituent atoms, a truth table can show whether a proposition is true, false, tautological, or contradictory. [93] See § Semantic proof via truth tables.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.
An example: we are given the conditional fact that if it is a bear, then it can swim. Then, all 4 possibilities in the truth table are compared to that fact. If it is a bear, then it can swim — T; If it is a bear, then it can not swim — F; If it is not a bear, then it can swim — T because it doesn’t contradict our initial fact.
An XNOR gate can be implemented using a NAND gate and an OR-AND-Invert gate, as shown in the following picture. [3] This is based on the identity ¯ (¯) ¯ An alternative, which is useful when inverted inputs are also available (for example from a flip-flop), uses a 2-2 AND-OR-Invert gate, shown on below on the right.
The self-dual connectives, which are equal to their own de Morgan dual; if the truth values of all variables are reversed, so is the truth value these connectives return, e.g. , maj(p, q, r). The truth-preserving connectives; they return the truth value T under any interpretation that assigns T to all variables, e.g. ,,,,.