Search results
Results from the WOW.Com Content Network
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.
The algorithm starts with an initial estimate of the optimal value, , and proceeds iteratively to refine that estimate with a sequence of better estimates ,, ….The derivatives of the function := are used as a key driver of the algorithm to identify the direction of steepest descent, and also to form an estimate of the Hessian matrix (second derivative) of ().
In the EQP phase of SLQP, the search direction of the step is obtained by solving the following equality-constrained quadratic program: + + (,,).. + = + =Note that the term () in the objective functions above may be left out for the minimization problems, since it is constant.
Quadratic programming is particularly simple when Q is positive definite and there are only equality constraints; specifically, the solution process is linear. By using Lagrange multipliers and seeking the extremum of the Lagrangian, it may be readily shown that the solution to the equality constrained problem
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Coordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function.At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks.
A linear programming problem is one in which we wish to maximize or minimize a linear objective function of real variables over a polytope.In semidefinite programming, we instead use real-valued vectors and are allowed to take the dot product of vectors; nonnegativity constraints on real variables in LP (linear programming) are replaced by semidefiniteness constraints on matrix variables in ...
However, the overall number of iterations to proposed optimum may be high. Nelder–Mead in n dimensions maintains a set of n + 1 test points arranged as a simplex. It then extrapolates the behavior of the objective function measured at each test point in order to find a new test point and to replace one of the old test points with the new one ...