enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data element - Wikipedia

    en.wikipedia.org/wiki/Data_element

    In practice, data elements (fields, columns, attributes, etc.) are sometimes "overloaded", meaning a given data element will have multiple potential meanings. While a known bad practice, overloading is nevertheless a very real factor or barrier to understanding what a system is doing.

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Mark cell ‘c’ as a new cluster; Calculate the density of all the neighbors of ‘c’ If the density of a neighboring cell is greater than threshold density then, add the cell in the cluster and repeat steps 4.2 and 4.3 till there is no neighbor with a density greater than threshold density. Repeat steps 2,3 and 4 till all the cells are ...

  4. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The most used such package is mclust, [35] [36] which is used to cluster continuous data and has been downloaded over 8 million times. [37] The poLCA package [38] clusters categorical data using the latent class model. The clustMD package [25] clusters mixed data, including continuous, binary, ordinal and nominal variables.

  5. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    The function used to determine the distance between two clusters, known as the linkage function, is what differentiates the agglomerative clustering methods. In single-linkage clustering, the distance between two clusters is determined by a single pair of elements: those two elements (one in each cluster) that are closest to each other.

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    Cutting after the third row will yield clusters {a} {b c} {d e f}, which is a coarser clustering, with a smaller number but larger clusters. This method builds the hierarchy from the individual elements by progressively merging clusters. In our example, we have six elements {a} {b} {c} {d} {e} and {f}.

  8. k-medoids - Wikipedia

    en.wikipedia.org/wiki/K-medoids

    In contrast to the k-means algorithm, k-medoids chooses actual data points as centers (medoids or exemplars), and thereby allows for greater interpretability of the cluster centers than in k-means, where the center of a cluster is not necessarily one of the input data points (it is the average between the points in the cluster).

  9. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    Given a set of n objects, centroid-based algorithms create k partitions based on a dissimilarity function, such that k≤n. A major problem in applying this type of algorithm is determining the appropriate number of clusters for unlabeled data. Therefore, most research in clustering analysis has been focused on the automation of the process.