Search results
Results from the WOW.Com Content Network
3 (i.e. the first acid dissociation constant for carbonic acid), K 2 is the equilibrium constant for the reaction HCO − 3 ⇌ H + + CO 2− 3 (i.e. the second acid dissociation constant for carbonic acid), and DIC is the (unchanging) total concentration of dissolved inorganic carbon in the system, i.e. [CO 2] + [HCO − 3] + [CO 2− 3].
The fourth row, labeled E, is the sum of the first two rows and shows the final concentrations of each species at equilibrium. It can be seen from the table that, at equilibrium, [H +] = x. To find x, the acid dissociation constant (that is, the equilibrium constant for acid-base dissociation) must be specified.
They were originally measured by using nitroanilines as weak bases or acid-base indicators and by measuring the concentrations of the protonated and unprotonated forms with UV-visible spectroscopy. [3] Other spectroscopic methods, such as NMR, may also be used. [2] [4] The function H − is defined similarly for strong bases:
An acid-base diagram for human plasma, showing the effects on the plasma pH when P CO 2 in mmHg or Standard Base Excess (SBE) occur in excess or are deficient in the plasma [23] Acid–base imbalance occurs when a significant insult causes the blood pH to shift out of the normal range (7.32 to 7.42 [ 16 ] ).
A predominance diagram purports to show the conditions of concentration and pH where a chemical species has the highest concentration in solutions in which there are multiple acid-base equilibria. [1] The lines on a predominance diagram indicate where adjacent species have the same concentration.
The equilibrium constant for the protonation of a base, B, + H + ⇌ + is an association constant, K b, which is simply related to the dissociation constant of the conjugate acid, BH +. = The value of is ca. 14 at 25 °C. This approximation can be used when the correct value is not known.
Most of the carbonic acid then dissociates to bicarbonate and hydrogen ions. The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3), bicarbonate ion (HCO − 3), and carbon dioxide (CO 2) in order to maintain pH in the blood and duodenum, among other tissues, to support proper ...
Brønsted and Lowry characterized an acid–base equilibrium as involving a proton exchange reaction: [18] [19] [20] acid + base ⇌ conjugate base + conjugate acid. An acid is a proton donor; the proton is transferred to the base, a proton acceptor, creating a conjugate acid.